Back to Home Page of CD3WD Project or Back to list of CD3WD Publications

Microbiology

The three steps of biogas production

Biogas microbes consist of a large group of complex and differently acting microbe species, notable the methane-producing bacteria. The whole biogas-process can be devided into three steps: hydrolysis, acidification, and methane formation. Three types of bacteria are involved.


[IMAGE] The three-stage anaerobic fermentation of biomass
from: Production and Utilization of Biogas in Rural Areas of Industrialized and Developing Countries, Schriftenreihe der gtz, No. 97, p. 54; after: Märkl, H.: Mikrobielle Methangewinnung; in: Fortschritte der Verfahrenstechnik, Vol. 18, p. 509, Düsseldorf, FRG

Hydrolysis

In the first step (hydrolisis), the organic matter is enzymolyzed externally by extracellular enzymes (cellulase, amylase, protease and lipase) of microorganisms. Bacteria decompose the long chains of the complex carbohydrates, proteins and lipids into shorter parts. For example, polysaccharides are converted into monosaccharides. Proteins are split into peptides and amino acids.

Acidification

Acid-producing bacteria, involved in the second step, convert the intermediates of fermenting bacteria into acetic acid (CH3COOH), hydrogen (H2) and carbon dioxide (CO2). These bacteria are facultatively anaerobic and can grow under acid conditions. To produce acetic acid, they need oxygen and carbon. For this, they use the oxygen solved in the solution or bounded-oxygen. Hereby, the acid-producing bacteria create an anaerobic condition which is essential for the methane producing microorganisms. Moreover, they reduce the compounds with a low molecular weight into alcohols, organic acids, amino acids, carbon dioxide, hydrogen sulphide and traces of methane. From a chemical standpoint, this process is partially endergonic (i.e. only possible with energy input), since bacteria alone are not capable of sustaining that type of reaction.

Acid-producing bacteria, involved in the second step, convert the intermediates of fermenting bacteria into acetic acid (CH3COOH), hydrogen (H2) and carbon dioxide (CO2). These bacteria are facultatively anaerobic and can grow under acid conditions. To produce acetic acid, they need oxygen and carbon. For this, they use the oxygen solved in the solution or bound oxygen. Hereby, the acid-producing bacteria create an anaerobic condition which is essential for the methane producing microorganisms. Moreover, they reduce the compounds with a low molecular weight into alcohols, organic acids, amino acids, carbon dioxide, hydrogen sulphide and traces of methane. From a chemical standpoint, this process is partially endergonic (i.e. only possible with energy input), since bacteria alone are not capable of sustaining that type of reaction.

Methane formation

[IMAGE] Various types of methanogenic bacteria. The spherically shaped bacteria are of the methanosarcina genus; the long, tubular ones are methanothrix bacteria, and the short, curved rods are bacteria that catabolize furfural and sulfates. The total length of the broken bar at top left, which serves as a size reference, corresponds to 1 micron.
Source: Production and Utilization of Biogas in Rural Areas of Industrialized and Developing Countries, Schriftenreihe der gtz, No. 97, p. 55

Methane-producing bacteria, involved in the third step, decompose compounds with a low molecular weight. For example, they utilize hydrogen, carbon dioxide and acetic acid to form methane and carbon dioxide. Under natural conditions, methane producing microorganisms occur to the extent that anaerobic conditions are provided, e.g. under water (for exemple in marine sediments), in ruminant stomaches and in marshes. They are obligatory anaerobic and very sensitive to environmental changes. In contrast to the acidogenic and acetogenic bacteria, the methanogenic bacteria belong to the archaebacter genus, i.e. to a group of bacteria with a very heterogeneous morphology and a number of common biochemical and molecular-biological properties that distinguish them from all other bacterial general. The main difference lies in the makeup of the bacteria's cell walls.

Symbiosis of bacteria

Methane- and acid-producing bacteria act in a symbiotical way. On the one hand, acid-producing bacteria create an atmosphere with ideal parameters for methane-producing bacteria (anaerobic conditions, compounds with a low molecular weight). On the other hand, methane-producing microorganisms use the intermediates of the acid-producing bacteria. Without consuming them, toxic conditions for the acid-producing microorganisms would develop.

In practical fermentation processes the metabolic actions of various bacteria all act in concert. No single bacteria is able to produce fermentation products alone.